Back to FabImage Library website
You are here: Start » Function Reference » Computer Vision » Hough Transform » DetectPaths

DetectPaths
Header: | FIL.h |
---|---|
Namespace: | fil |
Module: | FoundationBasic |
Finds a specified shape in an image using Hough Transform.
Applications: This is an old algorithm for template matching. Quite slow.
Syntax
C++
C#
void fil::DetectPaths ( const fil::Image& inImage, ftl::Optional<const fil::Region&> inRoi, const fil::Path& inPath, float inMinScore, float inEdgeThreshold, ftl::Array<fil::Path>& outPaths, ftl::Array<float>& outScores, fil::Image& diagGradientMagnitudeImage, fil::Image& diagScoreImage )
Parameters
Name | Type | Range | Default | Description | |
---|---|---|---|---|---|
![]() |
inImage | const Image& | Input image | ||
![]() |
inRoi | Optional<const Region&> | NIL | Input region of interest | |
![]() |
inPath | const Path& | Input path | ||
![]() |
inMinScore | float | 0.0 - ![]() |
20.0f | Minimum matching score |
![]() |
inEdgeThreshold | float | 10.0f | Minimum accepted edge magnitude | |
![]() |
outPaths | Array<Path>& | Output paths | ||
![]() |
outScores | Array<float>& | Output scores | ||
![]() |
diagGradientMagnitudeImage | Image& | Visualized gradients magnitude of an input image | ||
![]() |
diagScoreImage | Image& | Calculated score for each pixel of an input image |
Description
The operation detects paths in the inImage using the Generalized Hough Transform approach. The output array is ordered from best matching to worst matching results.
Examples
![]() A sample path (scaled for convenience). |
![]() |
![]() |
DetectPaths performed on the sample images with inMinScore = 0.7.
Remarks
DetectPaths is not scale- or rotation-invariant (slightly scaled or rotated paths are, however, detected properly).
Long inPaths cause long computation time.
Errors
List of possible exceptions:
Error type | Description |
---|---|
DomainError | Degenerate path in DetectPaths. |
See Also
- DetectLines – Finds lines in an image using Hough Transform.
- DetectMultipleCircles – Finds circles of a given radius in the input image using Hough Transform.
- DetectSegments – Finds segments in an image using Hough Transform.