Back to FabImage Deep Learning website
You are here: Start » Computer Vision » Deep Learning » DL_DetectAnomalies2_WithThresholds

DL_DetectAnomalies2_WithThresholds
Header: | FILDL.h |
---|---|
Namespace: | fil |
Module: | DL_DA |
Executes a Detect Anomalies 2 model on a single input image.
Syntax
C++
C#
void fil::DL_DetectAnomalies2_WithThresholds ( const fil::Image& inImage, const fil::DetectAnomalies2ModelId& inModelId, float inT1, ftl::Optional<float> inT2, float inScaleHeatmap, fil::Heatmap& outHeatmap, bool& outIsValid, float& outScore, bool& outIsConfident, ftl::Conditional<fil::Region>& outRoi )
Parameters
Name | Type | Range | Default | Description | |
---|---|---|---|---|---|
![]() |
inImage | const Image& | Input image | ||
![]() |
inModelId | const DetectAnomalies2ModelId& | Identifier of a Detect Anomalies 2 model | ||
![]() |
inT1 | float | 0.0 - ![]() |
100.0f | 'Good' threshold value |
![]() |
inT2 | Optional<float> | 0.0 - ![]() |
156.0f | 'Bad' threshold value, if not set 'Good' threshold will be used. |
![]() |
inScaleHeatmap | float | 0.0 - 10.0 | 1.0f | Modify visualization of the output heatmap. This does not affect outScore. |
![]() |
outHeatmap | Heatmap& | Returns a heatmap indicating found anomalies | ||
![]() |
outIsValid | bool& | Returns true if no anomalies were found | ||
![]() |
outScore | float& | Returns score of the image | ||
![]() |
outIsConfident | bool& | Returns false if the score is between T1 and T2 | ||
![]() |
outRoi | Conditional<Region>& |
Requirements
For input inImage only pixel formats are supported: 1⨯uint8, 3⨯uint8.
Read more about pixel formats in Image documentation.
Errors
List of possible exceptions:
Error type | Description |
---|---|
DomainError | Empty image in DL_DetectAnomalies2_WithThresholds. |
DomainError | Not supported inImage pixel format in DL_DetectAnomalies2_WithThresholds. Supported formats: 1xUInt8, 3xUInt8. |