You are here: Start » FIL.NET » Function Reference » Data Classification » Multilayer Perceptron » FIL.MLP_Init
Creates multilayer perceptron model.
Namespace: | FilNet |
---|---|
Assembly: | FIL.NET.dll |
Syntax
C++
C#
public static void MLP_Init ( FilNet.ActivationFunction inActivationFunction, FilNet.MlpPreprocessing inPreprocessing, int inInputCount, int inOutputCount, FilNet.MlpModel outMlpModel )
Parameters
Name | Type | Range | Default | Description | |
---|---|---|---|---|---|
![]() | inActivationFunction | FilNet.ActivationFunction | Type of activation function used to calculate neural response. | ||
![]() | inPreprocessing | FilNet.MlpPreprocessing | Method of processing input data before learning. | ||
![]() | inInputCount | int | <1, INF> | 1 | MLP network input count. Default value: 1. |
![]() | inOutputCount | int | <1, INF> | 1 | MLP network output count. Default value: 1. |
![]() | outMlpModel | FilNet.MlpModel | Initialized MlpModel. |
Description
Filter initializes and sets structure of the MlpModel.

Image: Internal structure of MlpModel. Function f denotes the inActivationFunction.
Parameter inHiddenLayers represents number of neurons in consecutive hidden layers.
The parameter inActivationFunction is a function used to calculate internal neuron activation.
The weights of the multilayer perceptron are initialized by a random numbers. Their values depend on inRandomSeed value.
Parameters inInputCount and inOutputCount defines network inputs and outputs count.