You are here: Start » FIL.NET » Function Reference » Data Classification » Support Vector Machines » FIL.SVM_ClassifyMultiple
Classifies input points based on trained model.
Namespace: | FilNet |
---|---|
Assembly: | FIL.NET.dll |
Syntax
public static void SVM_ClassifyMultiple ( FilNet.SvmModel inSvmModel, IList<IList<float>> inVectorArray, IList<int> outPredictions, NullableRef<List<int>> outModelClasses, NullableRef<List<List<float>>> outClassProbabilities )
Parameters
Name | Type | Range | Default | Description | |
---|---|---|---|---|---|
![]() | inSvmModel | FilNet.SvmModel | Input trained model. | ||
![]() | inVectorArray | System.Collections.Generic.IList<System.Collections.Generic.IList<float>> | Data vector array of unknown classes. | ||
![]() | outPredictions | System.Collections.Generic.IList<int> | Predicted classes. | ||
![]() | outModelClasses | FilNet.NullableRef<System.Collections.Generic.List<int>> | All known model classes in order. Can be null to skip this parameter calculation. | ||
![]() | outClassProbabilities | FilNet.NullableRef<System.Collections.Generic.List<System.Collections.Generic.List<float>>> | For each data vector the probability of belonging to each class. Can be null to skip this parameter calculation. |
Description
The operation predicts classes for the given data points. It takes an array of data vectors (inVectorArray) as
an argument. Each vector has to be of the same size as vectors used for training the model.
The operation outputs predicted class (outPredictions) for each data vector.
outModelClasses are all class labels encountered during training.
outClassProbabilities provides, for each vector,
estimated probability of this vector belonging to each class.
Precisely, in each array the value under index i denotes probability of given vector belonging to the class outModelClasses[i].
Errors
List of possible exceptions:
Error type | Description |
---|---|
DomainError | Empty vector array in SVM_ClassifyMultiple. |
DomainError | Incorrect vector size in SVM_Classify |
DomainError | Incorrect, uninitialized or not trained SvmModel in SVM_ClassifyMultiple. |