You are here: Start » FIL.NET » Function Reference » Data Classification » Principal Component Analysis » FIL.ApplyPCATransform
Applies previously obtained Principal Component Analysis (PCA) transformation coefficients to new data.
Namespace: | FilNet |
---|---|
Assembly: | FIL.NET.dll |
Syntax
C++
C#
public static void ApplyPCATransform ( FilNet.Matrix inMatrix, FilNet.PCAModel inPCAModel, FilNet.Matrix outTransformedMatrix )
Parameters
Name | Type | Range | Default | Description | |
---|---|---|---|---|---|
![]() | inMatrix | FilNet.Matrix | Input data with variables in columns and examples in rows. | ||
![]() | inPCAModel | FilNet.PCAModel | Previously created PCA model to apply to data provided in inMatrix. | ||
![]() | outTransformedMatrix | FilNet.Matrix | Transformed inMatrix. |
Errors
List of possible exceptions:
Error type | Description |
---|---|
DomainError | Malformed inPCAModel - MeanVector and StandardDeviationVector are not row-vectors in ApplyPCATransform. |
DomainError | Malformed inPCAModel - MeanVector and StandardDeviationVector have to have the same length in ApplyPCATransform. |
DomainError | PCAModel does not match - inMatrix column count does not match in ApplyPCATransform. |
DomainError | PCAModel does not match - PCAFeatureVector dimensions does not correspond to inMatrix dimensions in ApplyPCATransform. |
DomainError | PCAModel does not match - StandardDeviationVector length is different then inMatrix column count in ApplyPCATransform. |