FisFilter_DL_DetectAnomalies2


Header: FIL.h
Namespace: fil
Module: DL_DA

Executes a Detect Anomalies 2 model on a single input image.

Syntax

void fil::FisFilter_DL_DetectAnomalies2
(
	const fil::Image& inImage,
	const fil::DetectAnomalies2ModelId& inModelId,
	const float inScoreScale,
	fil::Heatmap& outHeatmap,
	bool& outIsValid,
	float& outScore,
	bool& outIsConfident,
	float& outT1,
	float& outT2,
	ftl::Conditional<fil::Region>& outRoi
)

Parameters

Name Type Range Default Description
Input value inImage const Image& Input image
Input value inModelId const DetectAnomalies2ModelId& Identifier of a Detect Anomalies 2 model
Input value inScoreScale const float 0.5 - 1.5 1.0f Scale factor for T1 and T2 (default value results in usage of T1 and T2 from model)
Output value outHeatmap Heatmap& Returns a heatmap indicating found anomalies
Output value outIsValid bool& Returns true if no anomalies were found
Output value outScore float& Returns score of the image
Output value outIsConfident bool& Returns false if the score is between T1 and T2
Output value outT1 float& Returns T1 'Good' threshold value
Output value outT2 float& Returns T2 'Bad' threshold value
Output value outRoi Conditional<Region>& ROI used in training

Requirements

For input inImage only pixel formats are supported: 1⨯uint8, 3⨯uint8.

Read more about pixel formats in Image documentation.

Hints

  • It is recommended that the deep learning model is deployed with DL_DetectAnomalies2_Deploy first and connected through the inModelId input.
  • If one decides not to use DL_DetectAnomalies2_Deploy, then the model will be loaded in the first iteration. It will take up to several seconds.

Remarks

This filter should not be executed along with running Deep Learning Service as it may result in degraded performance or even out-of-memory errors.

Errors

List of possible exceptions:

Error type Description
DomainError Not supported inImage pixel format in FisFilter_DL_DetectAnomalies2. Supported formats: 1xUInt8, 3xUInt8.

See Also

  • Models for Deep Learning may be created using FabImage Deep Learning Editor or using Training Api (C++ based API Training is available in 5.3 and older versions only).

    For more information, see Machine Vision Guide.